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ABSTRAC.T

. 4

"~ This Report is presented in two parts: Pavt 1+ compmsese_.
Sectlons 1 and 2; Part II consists of Sections 3 through 5.
: Seohon 1, a calcuius for a Boolean function of a real
‘variable is developed and utilized in the formation of a model
of the = inpie Boolean machine. In Section 2, rules of probabil-
ity are developed for Boolean events, and applied fo the simple
Boolean machine.
In Section 3, a canonical representation of the Boolean
. system is developed and discussed. Probability is introduced
to the canonical representation of the simple Boolean system
in the following Section, with a demonstration that the simple
Boolean machine may be regarded as a discrete Markov pro~
cess. Attention is directed here¢ fo the solution of this process
by matrices of generating functions. Physical devices that may
be used to analyze a Boolean system are discussed in Section 5,

and a trinary counter is analyzed with respect to the theory of
Sections 4 and 5 i‘nr nurnogeg of illngération of the +l—-nnny
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SOME MATHEMATICAL REMARKS ON THE BOOLEAN MACHINE

Part I¥

1. The Mathematical Boolean Function of a Real Independent Variable t
and the Calculus of Such Funciions
First let us define the general Boolean function F(t) of a real independent
variable t.

Definition 1.1 F(t), where t lies in either a finite or an infinite 1nterva1
the range R of t, is said to be a general Boolean functlon or a GB-function if it

has the following property.
very value of the real variable, t in the range of definition, F(t) has
on

b2
one and only one of the abstract values, either 0 or I. That is,

F{i} = (either 0 or Ij for t < R. - 1.1
Tet ug ow co*xslder the definition of the sum; product and negation of

GB- functmns. -

-Definition 1.2 If there are two functions, F(i) and G(t) defined as in
Definition 1 1 over the same range R of {, then the sum, product and negation
_ functlons are, respectively, S )

F(t) + G, F(t) ‘G (t) and F! (t) ' (1.2)

for each real val.e of t within R. The rules for negation, sum ‘and product are
given in Ta.ble 1. :

Table 1
() 0] O | FO GO | FO GO
R T ~D 0
0 - I 1 I 0
i o o I o .
I I “ 0 I 1

*Author! s"l\Tote,‘ Part I of the Report "Some Mathematical Remzrks on the Boolean \

_Machine” is a corrected and revised copy of a report of the same part and title
that T,EL: ;3-"‘78".7361’:51-? subhmiftad 18 l"nm-nnfn"' Pesagrch (‘ornoraflon onl Augu.-,f 1951,
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Lemma 1.1 The sum, product and negation functions of GB-functions

are GB-functions.
Proof: The lemma follows immediately from Table 1 and Definition 1.1.

Let us now define the left and right limits of a GB-function.

Definition 1.3 The left limit

F(t,-) = eglo F(t -~ <) (1.3)

of a GB-function F(t) is said to exist for t =t " if there exists § > 0 such that

F(t;-¢) = F(t-5)
for all ¢ where 6>¢ > 0. If F(t_-) exists, then °

. ‘ F(t,-) = F-(to— 5;)

for any 61 where 62 61 > 0. The condition for ex1stence and ‘the definition of a

signs are replaced by plus signs.

"ﬁéfiﬁiﬁ‘on I.4 Suppose 7(f) is a GB-function évér the range R = (a, b)
where ag t <b. If Pt -) exists for 't ¢ R and

- Fltg-) = F(Fo)’ :
then F(t) is said to be left continuous at the point t =t ~ I F(t o+) exists and

CF(tgh) = F(t), o

tir;uou:;é at the point £t =t o’ then F(t) is continuous at the point t = to or t, is a

T T S NN | T T | N | P R R e

point of continuity of the GB-function F(t). Suppose F(ta'——) and F(tG+_) exist at

=t o° ther the point t N is said to be a point of simple discontinuity of the

e GB-function F(t) if t  is not a point of continuity.

Definifion 1.5 If the range R of t is finite, then F({) is defined fo
be a B-function if it is a BG-function and every point t of R is a point of con-

<
et .Sy oy 4 PUSPURpIIgII. & M QU .0.-._ l e e - K, f—-‘ £ £ z £
ST TR & 5 GEE R RRRSE .
tinuity excepl possibly for, ai mosi, 2 finile sef of points of simple di sco::.‘ﬁuli"

(including the end pomts of the range) as defined in Definition 1.4, If R is an
-2-

ight limit are had if in the above the word "lefi" is replaced by Fright® and minus

then F(t) is right continuous at the point t = t . If F(t) is both left and right con-
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infinite range, then F(t) is a B-function if for every subinterval of R 1‘: is con-
tinuous everywhere except possibly for, at most, a finite set of poinic of

simple discontinuity. .
Definition 1.6 A B-function, as defined in Definition 1.5, is defined ° )

TR ETERETE

to be a B -function if F(t) is right continuous for all values of t.

Definition 1.7 A B-function is defined to be a Bl-functionA if F(t) is &
left contmuous for all values of ¢ where t R S

Deﬁmtlon 1.8 A B-function F(t) is 2 B, -function if for every possible

i F

point t = t of simple di.scontinuit'y, F(f) is neither right mor left continuous at

-:t_, . . -. : . ) :_'-_'

=1

‘Definition 1.9 Suppose F(t) 1s a GB- functz,on and that t =t is a point
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F(t,-) = 0, then F{ij=1, N

-

P!

E L&st .

and t = Y is called a right up Jump pomt of F(t), otherw1se t is a right down

¥ . Jump point. Left Jump, left up or down jump, pomts are defmnd s1m11ar1y.
If Pty is neither left nor right contmuous at t=1¢, then ¢ is a spzke point.

N  If ¢ is a spike poin ta,nd

F(t,) = F(g*) = 0, .

then F(to) =] and t = 1 is called an up spike point of F(t), othierwise to isa
. ‘down spike point. , B A

From nnﬁmtmnq 1.6, 1.7. 1.8 and 1.9, the following theorem is clearly true:

- R

.

Ihg.orgm 1.1 The only possible points of simple dxsz.qmmu;ty of B,,

4 B or B functions are, respectively, left jump points, right jﬁa:@:;p p-éints* or
{9 . e < i T

. spike. pomfs.

0 s e

-

- The follomng theorem is clearly true by Lemma 1.1 and Zjesm:hons 1.3,

e A
e e

.

i.6, 1.7 arid 1.8.

-3-

SR LI R




Theorem 1.2- The sum, product and negation functions of B, BE’ Br

or Bo functions are, respectively, B, Bﬁ’ B or B functions.
From Theorem 1.2 and Definition 1.3 we clearly have the followiﬁg lemma:

Lemma 1.2 If F(t) and G(t) are B-functions, then
Jim, |F(t = ¢) + G(t = €)] = F(t-) + G(t-)
- dim |F(t + ¢) + G(t + €)| = P(t+) + G(t+)
lim |F(t - €) F(t - )| = F(t-) G(t-)
Jim |F(t + €) Gt + €)| = F(t+) G(t+)

Llimy F(t - o) = F(t-)

el_gp- F'(t + ¢) = Fi‘(t+) :

The next theorem will show that the left or right limit operation transiorms
a B functmn of one type 1nto a B functlon of another type.

( Theorem 15 If F(t) isa B function, then Glt\ = Flt--) isa Bz functxon.

If B(t) is a. Blfunct1on, then G(t) = F(t+) isa B, ~function. If F(t)is a B, functmn,
then ;
F(t—) =Ft+)=IallteR

-if'F‘(t) has down spikes, or

; F{t-)=F(t+)=0allt e R
if F(t) has up spikes.

Proof: K F(t)isa B -function, suppose t is a point of simple discon-
tmuzty. By Definitions 1.4 and 1.3 there then emsts §>o0 such that
F(t, +6) = F(t ) = F(t, + e) .

and -
F(tg - 5) = F(t, — ¢

all e such that 0. < € £ §. Thus for ¢ such that § > ¢ > o we ha,ve
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T d.

Hence
G (to+) = F(to)

and G (t) has a right limit at t = t,, 2 right jump point of F(t). Also for all ¢, such

thato < ¢, < §/2 < 5 we have

G(t, — €)= F[(t, - &¢)=] = F(t, = ¢;) = F(t-) = G(t)) .

Therefore

1]

Glty) .-

Gt =)

and G(t) i left continuous at t = t_. If t; is a point of continuity of F(t); then by

G(to;‘) = G(to) = G(td‘{‘) é
Herice t is alsoe poinit of continuity of G(t); We have satisfied the comnditions for
G(t) = F(t=) to be a. B y ~fufiction, thus the first paft of ihe theorem is proved. The
rest of the theorem follows by & similar argument. |

If one thinks of the space of all B -funictions or all B  -functions, then
Theorem 1.3 éstablishes a one=to-one correspondence between the elements of the
two.spacég; moreover, Theore.a 1.2 and Lemmia. 1.2 provide the machinery to
show that this mapping is an algebraically isomorphic mapping. A further study
of the various properties of these function spaces will be made at a later date
(these function spaces form interesting topological rings).
' Theorein 1.4 If F(t) is a B"I._.-function, the transformations

= : ) d._F(t) = F(t-) F'(t)

4, Fit) = By Bit) = - - (L4

A F(t) = d,_F(t) + d F(f) = F&-) @ Ft)
where @ is the Boolean rifig sum, map F(t) onto B, -fanctions. The operators d. B

o and &.f map; yfes“pé*eﬁ‘vei.yf only the down jump points of F(t) info up spikes,

-FH-
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only the up jump points of F(t) into up spikes and only the jump points cf F(t) into
up spikes. If F(t)is a Bf -function, then the transformations

t
d, F(t) = F(t) F(t+)
!
d, F(t) = F (=) F(t) (1.5)
d,F(t) = d, F(t) +d,,F(t) = F(t) & F(t4)
map F(t) onto B o, ~functions in a manner corresponding to the mappings (1.4).

Progijz By.Theore'm 1.3 F(t), F(t-ﬁ) and F(t-) are B-functions. Hence from
Theorem 1.2, d__F(t), d_,F(t) and d_F(t) are B-functions and by Definition 1.2,

:Lemma 1.2 and Definition 1.9 the only points of discontinuity are spike points.
- Thus d'r Fb)s dr + Fit) and 4 - F(t) are B_ -funections; The rermaindsr of the

theorein is clearly evident.
The Boolean ring plus sign ®, mentioned in the definition of d_ F(t) and
following rules:
F(t) + G(t) = F(t) ® G(t) ® F(t) G(t)

CF(H) @ G(t) = F'(t) G(t) + FR) G'(t) (1.6)

and i : '
F't)y=1a F(t) .

-where F(t) and G(t) are GB-functions. If can be showr; that a Boolean algebra

under the operations + and () is a Boolean ring under the operatlons @ and (-).

Under the operation ® , the Boolean ring is an additive group.

rIenc,eforth let us denote d s d - dr———’ by d, d+, d— respectivqu, and 'Iet us
deal with B‘r-fun_ctlons and Borfunctlons unless otherwise spe(;ified. Moreover, let .
us -denote Br-fuﬁctiOns- by capital latin letters and B -functions by small Latin
Ietters. By Theorem: 1.3 for any result that is C:Iev‘elop'ed for Bi_-function's there

will be a corresponding result for B;-functions. N g

_b-
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where S(t) has only down jump points for t =t_, t ,, ... t

following lemma:

From Theorem l.4 we see that d, d+ and d- are operators which map

Br—functions onto Bo—functions. Let us now consider the inverse images of these
mappings. Suppose first we are given the operator equation

dX(t) = p(t) (1.7)

R We wish to know all the B.- -functions X(t) which satisfy (1.7) if any;

=i
those functions X(t) which satisfy (1. T) are solutions of the operator equation (1.7)
or in this particular c¢ase, what might be called integrals of p(t)s From

Theorem 1.4, two solutions that satisfy (1.7) are
X(t) = 8ty -or I8 5(t) | (1.8)

4247 *°° and only up

228412 o0 In order to show that the solutions,

givén by (1.8), are the only Br-functions which satisfy-(1.7) let us consider the

jump points for t = LINY t$3 s eea t

b i :__,A
Lemma 1.3  The only B~ and Bo-functiJﬁs' which satisfy the operato¥

equation - :
L CdX(t)= 0 all teR B C(L.9)
are : : | ' '
: Xt)y=0 - all teR
or .
I all teR
' Proof: By Theorem 1.4, Equation (1.9).may be written as . )
X(t) ® X(t-) = 0 all teR
or : ‘
X(t) = X(t-) © - all teR

But this means that X(t) is a left continuous function. But by hypothesm if X(t) is
a B -fUnctlon, it is right continuous. Thus X(‘) is continuous at every pomt teR.

Suppose X(t) # 0 all teR and X(t) £ 1 all teR, then by Theorem 1.1, there must

exist a rlght jump point at some point g eR, which is a contradiction fo the

g -7-

 where p(t) is a B -function with up spike points at only the points to s byt v
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! continuity of X(t). If X(t) is a B_-function, then by Theorem 1.3

| X(t) = X(t=) = I all teR

[' or

0 all teR

Hence Lemma is proved.

‘ ‘ If we had not restricted Lemma 1.3 to B, and B functions, we would have found
that every B, -function satisfies (1.9). This is true since every Bl-function X(t) is

left continuous, thereby satié_fying (1.92) identically.

I Theorem 1.5 The only B,.-functions which satisfy the operator equation

afe those given by (1.8).. The only Bo -functions that satisfy (:1.7) are

{= | L Xmepm

i’ T and -
X(t) =1 @ p(t) ; ‘
| . If p(t) in (1.7) has at least one up spiké point, then there are no Bi--functions which

Proof: Suppose there exists a Brsfunctidn F(t) other than X(t) = S(t) or
I @ S(t) which satisfies (1.7). Then - « ‘ ' '
' s X(t) = p(t) and  dF(t) = p(t)

or . '
dX(t) @ dF(t) < p(t) @ p() = 0 all teR

Thus

[X(t) @ X(t=)] ® [F(t) & F(t-)]

[F(t) ® X(t)] @ [F(t-) @ X(t-)]

[Fo @ X] @ lim [Ft-e) + Xt- )]
by ]_,é;;rlma 1.2, Therefore by (1.4) we have

<

©
It

d[F(t) ® X(t)] =06  all teR,
whick by Lemmia 1.3 and Theorem 1.2 implies
F(t) @ X(t) = 0 all teR .

or; ) £ I all tcR .
X 8-

b, i

0 - ‘
. s ey t .

e

i bl
I Y A — P

b

i
%

[ N M e
| ’ .
N :' \ o

‘ N




Hence ) o R
. B(t) = X(t) or I@ X(t) all teR

which verifies the uniqueness of the Br-function soluticns, given by (1.8). The

The second statement of the theorern follows from the evident idéntities, )

dp(t) = p(t) ;

third sentence of the theorem is evident from the sentence preceeding the theorem. i
and

depw)-pm B . |

If p(t) = 0 for t< 0 and if for t2 0, p(t) has up spike points, then the opers

4 ===
[AW NS

equation (1.7) is somewhat analogous to a simple ordinary first order differéntial

equation . S o

2
el l'd
o
[ “—
n -
o
‘a2l
Spm
RSN | P s

where T(0) is the initial condltmn. If X(O—) is given as an initial condition; then by

i
L
|
1
Theorem 1.5, (1.7).has a _unique Solution S(tj for - r7 0, and there arg only two =~ i
possible solutions which are B -functlon.a. Let s pursue this analogy further in j l

the following theorem,
Theorem 1.6 Suppose p(t) and qg(t) are BdlfunctiOﬁs such that for ¢ < 0,
p(t) = q(t) = 0, and for t >0 that p(t) and q(t) ﬁoSs‘ess spike points, Then the
~ operator equation ‘
dX(t) ® p(t) X(t=) = q(t) o _ (1.10)
where initially X(0-) is either 0 or I, has a unique solution S(£) for t >0 which is
-1 Br-function. The equation has two and only two possible Bf-f‘unct-ion solutions,

depanding entirely on the value of X(0-).

- Procf; Let ug tonstruct a B ~function S(t) wh1 h satisfies (1.10), Let

. Sty = X(6=) for t< O,
and for ¢ > 0 let S(t) be defined by Table 2.

i




iie ony :’yr ~function solutiorn io ihie operat

Table 2
p(t) q(t) S(t-) || S(t)
0 0 0 0
0 0 I I
0 I 0 I
0 I I 0
1 0 0 0
1 0 1 0
I 0 I
i i | 1 I

It is clear from the definition of the B,.-function S(t) that S(t) has jump points at a

;._.:.3:.:. < = Sl g Y JRpy & 39 I ST SNy Y == e
or i is a spike point of both p{t) and q-\r- anda S{

point t only when t 1g not a_spike noint of n{t); t is a spike point of g{f) and
S(t=) = 0, or t i& a spike point of p(t);, t is not a spike point of g(t) and S(t~)

2L

i-) = 0. 1iis

- the B_-function S(t) satisfies (1.10) identically.

Let us consider the _Lini_qﬁelless of the solution to (1. 10) that was constructed
above, Suppose F(’c’), a B, _~function, satlsfles (1.10) as well as S(t), where for

t < O, F(t) is deflned by F(t) = X(0-~), the initial condltlon. Thus we have

: dr(t) @ p(t) F(t-) = q(t)
and
ds(t) ® p(t) S(t=) = q(t)

for all teR. Adding these two expressions, we obtain
d[F(t) @ s(t)] +p(t) [F(t-) & S(t-)] = 0 : (1.11)
for all teR and where F(t) = S(t) for t < 0. If we show that Y(t) = 0 for all {eR is

tor egiiation

d¥(t) & p(t) ¥(t-) =0 - _(1.12)

where initially Y(t) = 0 for t < 0, then by (I.«Ii) F(t) = S(t) for all teR and the
theorém is proved. Suppose the contrary, that Y(t) ;é 0 for all teR, then there
e¥ists a point t_ of simple discontinuity such that for all £ < i o Y(t) = 0. The

-10-
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point to must be an up jump point since the solution is t2 be a Br~function. Thus

Y(t,-) = 0
and
Y(t)=1 .
Substituting thes. values into the left of (1.12) we have

d¥(t ) + p(t,) Y(t,-) =1

which is a contradiction. Hence theorem is proved.
If in the operator equation (1.10) we lét
< biy=aw
and
Jb(t) = b(t) *+ p(t), |

X G [b(t) @  b{t)] Xt~} = b{D)
or 2 |
T XOENO e e e b X . wasy
From (1.6) we may rewrite (1.13) as '

X(t) £ bt) X'(t-) + b'(t) X(t=) . (1.14)

Equation (1.10) and its e‘q:uiValent (1.14) may be analysed approximately by a
physical device called a two ‘input fiip flop (for example, the Ecclos-Jordan flip
flop). The flip flop is a bistable state devise which is triggered by pulses, the
physical approximation to a spike. In this sense Equatiop (1.14) may be termed

the ideal flip-flop equation with the two B0 function inputs b(t) and 0b(’l:).

" Let us now define a special class of B functions, called the BT(aj functions.

Definition 1.7 A B_{sj function is a B -function F(t) over the infinite

range oo < t < which has jump points only at the points
a, att; af27; Lio5 aknT, Lo

(n=0;1, 2, 3, ...). The constant a is called the phase of F(t) and + is the
translation period of F(t). - '

-11-
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From Definition 1.7 the following lemma is evident.
Lemma 1.4- If 0< B < 7, then the B_(p)-function F(t) is a B_(p + n7)-
function for n = 0, %1, £2,,.. and conversely. B is called the residual phase of F(t).
Let us consider the two BT/Z(O} functions a(t) and or_x_(t.) which have the
special properties:

a(t) = o(t) =0 fort = (2n)r/2<t< (2n + 1) v/2 (1.15)

i ' PP “iE e ~ ) L s TR ]

, for 2n+ 1y v/2€t<(2n+ 2j+/2 =14
I - <

)

ana .
' a(t) = 0 or I)
A for-®&<ixk g
oelty = O.or =1J

<

- _Now consider tHe operafor equation -

X(t) = d [u.(t)] X'(t=) + d' [Oo.(t)] X(t=) (1.16)

where initially X(0-) = S(0-). (1.16)is the ideal flip flop equation {1.14) where one
input consists of up spikes occurring at the down jump points of a(t) and the other

_input consists of up spikes occurring at the down jump points of o.(ic)
Lemma 1.5 The unique solution 5(t) of (1 16)is a B (0) -function which
as well is the umque solution of the Boolean dlfference equation

Y(t) = a(t ~ v/2)a' ()Y}t - 7/2).+ [Oo.(t - 7/2) ot — +/2)] Yt - +/2) (1.17)

for t 2 7/2 where the initial condition of (1.17) is Y(t) = 8(t) for 0< t< +/2.

_ Proof: That the solution of {1.16) is a B(0)-function is evident from (I.15)

and Theorem 1.6, To show that S(t) satisfies (1.17) consider the following two cases:

Casel:: t St<t +7/2 (= 1.2,3,..0]

For this case a(t) = oa'(:t) = 0.and from (1.17)

-12-
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Y(t) = alt - 7/2) Y'(t - 7/2) + o't - ¥/2) Y(t - 7/2)
But also for this range of t
a(t = 7/2) = a{t;=) ,

/2y

oot = 7/2) = _a{t;-)

N ’
S(t - 7/2) = S(t;=)
a(t;) = ja(t) = 0
and also from (1.16) .
8 = att) S + o84 Sty

Hence

S(t) = a(t = 7/2) S'(t — T/é) + et - +/2) St - /2) .

(1.18)

(1.19)

From (1.19) and (1.18) we see that S(t) satisfies (1,17) when tst<t + v/2.

CaseIl:  t, +7/2€t<t,; (1=01,2...)

For thiscase o oo o o o e i

a(t = 7/2) = 0
and
t=7/2)=0 ,
thus_
: Y(t) = Y(t - 1/2)
But since S(t) is a B_‘_(O)~functionr ' '

Sit) = S(t - 1/2) .

. From (1.20) and (1.21) we see that S(t) satisfies (1.17) when
From cases [ and II we see that S(t), the solution of (1.16) is

< <
t; + /25 ¢ tiae

a solution of (1.17) for t > t/2. The pniqueneég of the solution may be 'es'tébiishéd
in a manner similar to the uniqueness-proof made in the next theorem.

Let us now define the so-ca]le‘d_r clock function E(t).

Definition 1.8  The clock function E(t) is a B_/,(0}j-function which has

the following propertiess

-13-
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I for -2<t<0
=0 for i, =(2)v/2<t< (21+1) 1/2

E(t)

1

=1 for (2 + 1) v/2< t<(@i+ 2) /2 = t, + 1

Now consider the BT(O) functions B(t) and oﬁ(t) with the properties:

b(t) =0orl
for all t,~ee<t<0 : (1.22)
of(t)=0orl
and
B(t) = 0 or i[l
5B(t) = 0 or Ij
where i = 0,1, 2,... From Definitioa 1.8 and (‘-i Zzj it is cieariy evident that
E(t)p(t) and E(t) B(t) have the same properties as a(t) and da-(t‘),- given by (1.15).

" Moreover, by Lemma 1.6 the solution S(t) of

X{t) = 4 _|E{) 8i8)) Xig— + @' | BT st Xii=j {1.33])
ALy = Gy BRE A \.,__'_ﬁ.‘_-,lor.,‘-a Alr==j (.43}

_wheve the initial condition is X(0-), is aISO the solution of

Yty = Bt = +/2) Bt = +/2) [BO peei]* Yi(t = +/2) o
b [ = v/2) o= w2) B )T e =/ )
for ¢ 2 1/2 where 1n1t1a11y Y() = S(t) when 0 <t < +/2, _
Theorem 1.7 The B (0)-funct1on S(t) which is the unique solution of

(1 23) and (1.24) is also the umque solution of the Boolean difference equation

Z(ty = B(t = 7) Z’(t - ) + ﬁ’(t =) Z(t -~ -r) (1.25)

for t >+ where initially Z(t) = S(t} when 0 < t <+ and B{t)s oﬁ(ty are B__E.(O)
func’oions, defmed by (1.22). 7 ‘

' Proof; From Definition Lg we have

E@) = Bt~ +/2) when t20. ° (1.26)
© Now from (1.24) when £ =, | . :

14~
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S(t)

B(t — 7/2) E'(t) S'(t — v/2) + [oﬁ(t - 1/2) E'(t)]' S(t - 1/2)

B(t - 7/2) E'(t){[[s(t - 1) B'(t = v/2)]' S'(t = 7) + B(t - 7/2) B'(t = 7/2) S(t - ™} ‘

+ [oB(t -1/2) E'(t)]' {p(t - T)E't-1/2)S'(t—7) + [op(t -1) E'(t - 7/2)]’ S(t — T)].

If we expand and use (1.26) this becomeés

S(t) = B(t — v/2) E(t) S(t - 7) + B(t — v) E'(t — v/2) S'(t = 7)

r ey v b

o+ BHE = #/2) Bt - T) S(t—T) + Bt —T) E(t) St -T)

1
.+ Bt =7/2) B(t - v/2) 8(t ~ ) 3 (1.27) ;,i -
Consider the following two regions: | ) 1
' Reglon It 4, t<t, +7/2 s =123, ?j f
' =
In this region : . B g
B®y=0, L Cod
Bt — +/2) = Bt = = :
and : . -
- i
_ S8l = +/2) = gt = 1) - o
L - !
Thus by (1.27) i

Stt) = p(t — /2) S'(t = 7) + B'(t - 7/2) S(t - 1)
=Bt—7) St -7) + B'(t~1) St-7) .
Hence in this region S(i) satisfies (1.25). |

Region H: ti+'r/2'6t<ti+1 (i=1,2,3...)

. In this region E(t) = I and E(t — 1) = 0. Thus by (1.27) | i
S@ = B(= 7y St =11 + - ) SE=1) + FE-T) Fl-TDSE-T) J

BT S - P St L4 -] |

= B(t 1) SH(t = 1) 4.t ~ ) S(E= 1) . : | -

Hence in this region S(t) satisfies (1.25). Since S{t) satisfies (1.25) in Regions I and
I, it satisfies (1.25) for t > . For the uniqueness of the solution S(t) note by (1.6)

- that (1.25) may beé rewritten as ¢ :
At =80 & [5) & SO 20 @ 20y . (128 :
~15- | ¥




'
(4 0

for t 2 0. Suppose there is another solution T(t) with initial condition T(t) = S(t)
for 0 £t < v which also satisfies (1.28). Also let L(t) = S(t)- + T(t), then by (1.28)
we have the difference equation '

Lit +7) = [B(t) ® B(t) @ 1] L(t) (1.29)

with initial condition L(t) = 0 for 0 £t < 7. Consider any arbitrary point t, where
< to < 1. Then by (1.29) L(to + 7) = 0. Suppose for the purposes of induciion

that L{t, + nT) = 0, then we have by (1.29) L(to + (n+1)7) = 0, Hence the induction
is complete and L('t +nr)=0foralln(n=20,1,2,...). Sin'ce t, was arbitrary for
0< t <7, we thus have L{t) = 0 for allt, t > 0. Hernce S(t) = T(t) for all ¢, t =0,

and the solutlon S(t) is unigue. Hence tneorem is provecl

Equation (1.25) is called the Boolean difference equatlon of the clocked flip

41 ALy 32 -... P -....l. 1,\ Alanle L. i mmlevimianld c £ pin

LV - P
T1UD, cr.uxt,c LX) 1S cpoiiuct UL nvll.r, tiie ¢loek .Luu\.;.v.uu, vIIcT yu.yn.u,a..n .v.uy LIVp

which anhalyzes this eqiiation may be con$1dered as a box with two input and two

....... P L2007 V5 QN SRR, ¥ S | | s i e T ¥ nm oo mishenigh f LTE £l ) Froemndin
uu.t.yd%. \ul \t, i5 OIGifaliiy aVaiiabit as an oulput 1rom ..he px;Ja;»d; 1:ip 1:0pP; iUGnCuilis

all of the same nature, B_(0) functions. Since B_T(O)“_ijuncti‘ons F(t) have the property
o~ O OF() = F(ty) for £, <t <t ++ ~ (1:30)
where t, isa ;;ossible jump point, (1.25) muy be considered entirely in terms of its
jump points as
Z(t;) = Blt;_y) Z'(E;_ )+ (L ) At ) 4 (=123, (1.31)
w-;vhere initially Z(to) = S(t o) (cither 0 or I). Equation (1.31) may also be called the

state éq‘uaﬁon‘ of the clocked flip flop since by (1.30) the value or state of F({) is
completely determined by F(t,) for an interval of at least r where t, is a possible

4

jump point, If we let _

2y = Z{t;),- B(t;) = By and BE) = ; . (L3
for i ='6, 1,2,..., then (L.31) becomes
’ Zy=B; g Tyt ey Zyy (E=EZu.l) (133

where initially Z_ = (eithéer 0 or.I). Equation (I.33) is the state equation of the

~16-
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clocked flip flop where the dependence on t has been removed; (1.33) is a discreet .
Boolean difference equation. Let us now consider a general system of Boolean
difference equations which reduce to a set of equations of the type of (1.33). ¢

Let Z-i(J) {(j =1,... N)be a set of dependent functions defined as in (1,32).

Let ol {l = 1,... M) be a set of independent functions, givenfori=10,1,2,..,. -

Now consider the system of Boolean difference equations

ziﬂ(j} - £ (Z:i(l), Zi(z)““ Zi(N); wi(l)’ ‘*’i(z)"--"*’i(M)) : s

P, TER T N -
"w e T e S S
— 7

- ’ §
. e A e iy 3 A [ |
where (j = L,... N), (i=0,1,2,..)and initially z ) = (either 0 or 1) for 1
j=1,... N. By de Morgan's theorem (see Section 2) (1.34) may be written as '8 ‘!
c ’ - . "ot
7. )2 g8 241 LUeL) LG S, (D) (M) i
i+1 “5 (l 20 0 i ’ 4 y ey H i poeee Wy ) i . ﬂ
B L - T R - X3 S o s W 4 3 B . .
TOS i §é é ¢ i ’ i fo & & i I i §o o i )i (a )- ;'l
- . E ok L
= s P O - £ Sx. K. e !i! 4o Kt o F YA Ho o s ” oy = %
where {1=1,,., N} (1=0,1,Z,,..}), 1mt1ai} ‘o =AEMAEr Y Or IJior} = Ly N = 3

() are 1ndependent of Z(J) and are in terms of suras and

k)

and both g, ) and g,

LV SN

R

: pro&ucts of the remaining v‘ariab'les Zi(J), Zi(J) ’ wi( an'd wi( )! for (j = I~,.-~ ««  N)

and (k = 1,,.. M), Equations (1.33) and (1.35) show that the simple Boolean system;
_gisen in (1.34) may be axialysed physically by a machine consisting of N clocked

flip flops for the dependent variables and suifable physical devices for producing \ :

the sum and product of the various var1ab1e Such a machine will be called the

snnple Boolean machine.,

The best exa‘mp'Ies_ of simple Boble'an machines known to this author are the
Maddidas and (or) universal computers being built or considcred by Computer

S
v Research Corporation, Northrop Aircraft Inc., Hughes Air‘craff,~ Cal. Tech,, and )
others, ¥ is thHis author's belief that all the elecironic and relay digital somputers —
2 4 i R A4 AP W - ' ) ¢
o in existence today may be interpreted as simple Boolean machines if the various
elements of these machines are regarded in an approprlaf:e manner, but this has
yef: to be proved. ¢
< < ‘ r t 5 To* ' S k4 P o s
There are more advanced Boolean systems of difference equations (many of ‘
which can be shown to reduce to the simple Boolean inachine) which could be o
-17- ﬁ 1
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analyzed physically by what we will denote generally by Boolean machines. The
stidy of more advanced systems will be our goal in part for the future as well as

the study of the inherent physical problems of the Boolean machine.

By stating that a Boolean machine is the analyzer of a Boolean system
(a mathematical system); we are saying that the processes of the machine and
the §¥stéem are analogiies of otie another. Therefore we may say that a Boolean
machine is an analogue to a Booléan system and vice versa. This statement

achieves ah inmiportant cohiceptual step in the subject of digital computing ridchines.
The Boolean system when regarded a5 an idealized mathematical model of a
Boolean machine should do mueh to unify the different désign techniques and
pliysical devices inveolved in the many different digital computing machmes that
have and will be considered; The different Boolean systems which can be
physically realized afford 4 hierarchy of new Boolean machines. When the
physlcal principles of a Boolean macnme ate considered ifi conjuriction with the
mathematical prineiples of its model, the Boolean system, a general phvsmal

theory of the Boolean machine should be the ul’umate result,

In concluding this section, let ug congider some examn‘es of Dhys1ca1
approximations to P}T(G) funictibns. Approximations to Such functions occur as a
sequence of high or Jow voltages or currents, a sequence of magnetized or

unmagnetized spots on a magnetizable surface, a sequence of white or black,
punched or unpunched spots on paper or other material, a sequence of charged
or uncharged spots on the surface of a dielectric, as a sequence of two different
materials stacked one upon the other, and so forth., The physical devices in a
ph'ysi(':‘a'l system which produce, which are acted upon or algebraically combine,
both statically and dynamically, the physIcaI B (0) functions make up ‘the
Boolean machine. In the next section, we will 1ntroduce probability theory to
the Boolean system:.
Z. Thé Introduction of Probability Theory fiiio the Boviean System

Let us cuppose we have n Boolean varidbles ay,...a  where each may
have éither the value 0 or I. New consider any function

X = %@y Gpre v @) (z.1y

a . which had n‘nﬂv’ the valnes 0 or I, f_ef

o3 atf,az,.'. - & which ha
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) = f( s agae ) £ X(a g ageenay) = 1) (2.2)

A3

be the set of n-tuples (ayr85,... an) rsuch that X(aysayeea )= I

Lemma 2.1 If x and y are functions of Qpseee@, @S given by (2.1), then

n

Ixlalyl = =yl (2.3)
whiere & is the set intersection operation and the bars are defined by (2.2)
Proof: By (2.2) we have
Xy = {(al, Gpseeed ) x(als, eedy ) FBgeeeaay) = I}
and | ' - o

[xl@lyf = {(agsazm. ag)s xlayim. oy = i_}a{(—sl,. By (B en By = ).
Now suppose the n-tuple (Viseoe Vni is contained in x 1 y or

(ryseeery)  [xl @ Tyl

(Yoo evry) = = Jlygse wo¥y)
and hetnice - 7 - ?_A c _ . _ S
| X(Ygreee¥y) FOreeevy) = 1
which implies _
(x| & {y| < |xy] _ : < (2.4)

where € stand}‘s for set inclusion. On the other hand, suppose
(61’;*.611) € Ixy] i ) -
then
x(al,...a-r;) y(8y0e008 ) =1

and by Table 3 we have

Tabls 3
x y Xy x +
0 0 o | o
6 | 1 0 i
I 0 0 I
¥ I 1 I
-10-
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(8,008 ) =1 and y(8,...8) =1
which implies
(6p0---8,) € x| a |yl
which in turn implies '
|xy| < [x| a |¥] (2.5)

Combining (2.4) and (2.5) we see that {2.3) is true. Hence lemma is proved.

Lemma 2.2 If x and y are functions of @;s...0, as given by (2.1), then

x| v |y| = |x +y] L (2.6)
where §§ is the set union operation and the bars are defined by (2.2).
Proof: By (2.2) we have

Py ~ [Ep—" | Ao i-l

{\}315,. .pn) PY(Bjreee Byl = 1}'

fod ea dod . N R
1] 0 b =i\ulj"'°'n) RS CTTPRI N A J°

and , ,
: N IO |
|x +¥| = t(:dis. e )t X(@se.b ) +y(Ese.n) = 1
Suppose for the n-tuple (v;,...7,) We have .. ]
(:V o e !"V_~—) € IX ._?!'. y' ) A ) — N S — e
e 1 - v n’ L) o - - -
"~ then

}g('yl,. e 'y’n) + y('yl,,. 50 '7'n) =1,
which by Table 3 obtains:
X(Ypre e ) = I and Yyyseeevy) =0 § (A)

which implies

(rpreeerg) € Ixl € [x] T [yl

or |

- il ‘ : . : —_—
w—mﬁim,n,mmﬁﬁmmﬂwﬁ_ﬁ G gt ‘

Xyperory) =0 and ylyp.oy) =1 (B)

(vpsee vy € Ivle [2]V [yl
or :

X(ypeeov) =1 and ylype..v) =1 () .
which implies :

:

O

o}

§d

g

kol

Pty

=

m

)]
3
4
-’
n
;._
e
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-§
81
= 1
By (A), (8) and {C) we thus have i )5
xryle lxlwlyl . @.7) |
Now suppose that :
(8;0.-.8_) ¢ |x| ¥ |y] -
then _ : ‘ :
_j X(8;500.8.)=1 and y(6;5...5.)=0 (D) !
or : é
X(8;s00.8,) =0 and y(&...8 ) =1 (B) i
or ‘ : i
| X(6p,.00 8y =1 and y(8;,...8)=1 . (F) _ I
By Table 3 ‘we have o
I
(800 s B) + ¥(8y00a8) = 1 o M
: 3
for (D), (E) and (F) which implies i
(810002 8,) € |x+yl
o 4
“or ] | o - "
ol e fot ) g . i
x| v yle Ix+y] .7 (28
If we combine (2.7) and (2.8), we see that (2.6) is true. Hence lemma is proved. R
7 Let us call the total set of n-tuples, (@gseee an), & . Then . _ ‘ .
Q = {(ul’.‘..an)} = {(O’OOOO”O)’ :(O’ooi‘o’ 1)’..0’(1’.0.1’1)} . (2.9) ';;
The function of the type, given by (2.1), which is I for evefy element of
% is I, thus o : ‘
1 =& .- : : (2.10)
Let us consider the complementary set of |x| which we will denote by
x| . By (2.9) we have
Ix| = @ |x]|= n-[(al,...an) 2 X(ayse..0.) =I} C _ >
- {(Bl“ .. ﬁn):: X(‘3'12° .. ﬁn) =.O:}‘ = {({31,. .o Bn) ::x'(p’l,.-.—_._ ﬁn) = I} <
= IX'I - . . ¢ ;4 ‘

-21-
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Thus

=] = Ix] . (2.11)
From (2.10) and (2.11) we have
[o] =0 (2.12)

where the zero on the right designates the empty set.

By de Morgan's theorem,

X(ayse..0) = %(0,...0,0) ayeeea 4 o

+ x(0,..:0, 0) 0.'1 05 C q'n—l e,

’

-'_- ees +x(L,...L1I) 0,-1(12, eeQp g O
we seé that there is a one-to-one correspondence beiween every suvset of £
and every Boolean function x of the n-Boolean variables Qpseeel o Or

specifically

x| | (2.13)

as defined by (2.2). From Lemma 2.1, Lemma 2.2, (2.10), (2.11), (2.12) and

ave the theorems: : : . : — as

ACKV T U ~uaa oadl

Theorem 2.1 The algebra of thé Zzn-Booiean functions of the n-Boolean

variables Qyseeea is algebraically isomorphic to the algebraJ~ of all subsets of

a={(... an)}.

. We may now form a field of probability if WeL allow three postulates to the
properties of ¥, call the n-tuples (al,. 50 an) glemenféry_events and call the

elements of F, |x|, random events. The postulates are (1):

I. To each set |x| of F there is assigned a non-negative real number
P(|x|). The number P(|x]|) is called the probability of the event |x|

Aoy = T
Vitas = xe

1. P(9) =P(jIh=1 .
111, If |x| & |y| = |xy| = [0} = 0, then
- Pixl v y))=2(x+y]) = P(x]) + P(lyl) .

(1) A. N.Kolmogorov, Theory of Probability, Chelsea (1950).
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From I, II and III and (2.3), (2.6) and (2.11) it is not difficult to show %

| P(|x'|) =1 - P(|x]) |
| P(|x +y|) = P(|x]) + P(]y]) - P(lxy]) (2.14)

P(|xy|) = By (Iy)) P(lx]) = By (=D POy ]

where Plx|( |¥|) is the conditional probability of the event |y| given the event |x|. ‘
The two events |x| and |y| are said to be independent if
P(lxy]) = P(Ix]) B(ly]) .. C(2.15)

A s1mple constructio’ of the above field of probabilities is had if one assigns a

Tl v st ety © o e A

probablllty tc each elementary event or n-tuple (0.1,. 1 ) A generallz.ed field

Yo AR

of “V‘Obablll‘tv i ﬂef'_l__n_ed hv Kolmaogorov {1 D. 14) which would be of use if the

i Y

 above discussed probability field is extended to an infinite probability field.

e MMne o o B4L

<

—S—

for i=0,1,2... where P(|Z_]) is the initial condition and where P, .(B) and

= an = . = e s o .. s . s - ) A i‘
Let us consider again the siate equation {1.33), Let us suppose that I
|zil, |‘3i| and | _B;| are all within the same probability field for i=0,1,2,.... _* !
" Then by (1.33) and (2.14) we have i
. ; , ‘
- (25,1} = Prgttesh PUZ D + 25yl oot 2012 (2 1.6 Ly
|

P|Z~i |_( |06i|) are given for i'=0,1,2,3.... Equation (2.16) is a probability

difference equation of a general two-state descrete Markov chain. If we treat

(1.35) in a similar manner we obtain

) o ', \
P = 0 me(zm 2, 2B o o) o2

+P|20)] |Os(j)(zi(1),...zi§j-1), Z{HD),, . 7, wi(i)““w.(M)DP(lzi(j)l):

(2.17)

N el wem R S

@

where the 1mt1a1 condition iz P{ | Z () |) as the system of pI‘Obablllty differefnice

equations for the simple Boolean machine. The solution of (2.17) will depend on

the independence of the events |Zi(j)| and

n‘a _,‘-\m_,‘._}f

(1) A.N. Kolmogorov, op cit.
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and IZi(J)I a:nd

A = | g 2D, (207D, 209, 29 w3, ()|

el
o Ti
and moreover, upon the question of statistical equilibrium. In (2.16) if

il__i’mm P(IZiI)’ ilai-r>nooP|23| (Iﬁil) and ; lim | PIZ;I'(IOBi’I) exist then we say that

edii'a.’ci"o;1 2:16) annrnaches a statistical equilibrium for i »e. If (2.16) approaches

a statlstlcal equilibrium then we will have for P(|2 |)

torla Iy

"iz .\Ilw

P! |(H3ml)+P|Z | Uobool)

P(Z,|) = (2.19)

<

Some of the mathematical answers to the questions of independ2nce and statistical
eguilibrium of the system (2.17) will be of interest later. The questions are

centered around ;3.('3) and ﬁ.(j) . Whether they are determined, i.e., ﬁ.(j) = I, of may

in the system, i.e. constraints are ne.cessarlly 1mposed in the desJ.gn of co_unters

which cycle on numbers other than 2",

Let us cons1der the following elementary example of the use of (2.16). Suppose

X, and y; are a sequence of binary digits, either 0 or I. Let C be the binary carry
of adding numerically xl 17 Yi-1 and Ci—l‘ Let Si be the sum moduli 2 of

' V3 and Ci‘ Then we have
- JU J— t ’ 1 t g
S; =X, pri OC =xy/ C; +x/ 5, C; +x, 5 C/ + x5, ¥7; C;

G =% 5’:: Cf+(x{y{)' C; (2.19)

fori=20,1,2..: where C is the initial cond1t10n and where X, and y; are randomly

chosen for i = 0,1, 2.... BEquations (2.19) are the.state equations for a serial

binary adder. Suppose fUrther.th'at the everits Ixil, Iyll and lCil are inutually

indepenident and that P(|x,|) = P(|x[) and P(|y;|) = P(|¥e|) all i. Ther by

(2.14) and (2.16) it is not difficult to show that ‘
-24-
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P{[x]) P(]Ye)
P(|2,]) P(|¥eol) + PIx'eo ). Py 1)

P(lC,l) =

P(|800l) = P(%0]) P(l30]) :
P(|x'es|) Py ,1) + Plxggl) PUlyL,1)

i p= 2 4

P | P PR A,
AT, AT Y RO L SRR |

SR
e S|

+P(lxig]) P(lysel)
= U\ Pllxel) Py ) + PUIx]) PU3 )
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SOME MATHEMATICAL REMARKS ON THE BOOLEAN MACHINE

Part I1

3. A.Canonical Representation of the Simple Boolgah Systém

In Section 1 of Part I the system of equations for the isimple Boolean system we

shail begin with are given by (1134) or
N <

7)< #0)z(1), 7(2) 7N, (1) (2 w{Ms) (3.1)

“i4l T A S | I S S i ‘ e
PR ) 2 mrs 29 LY D [ R R | P ':'(j) ~.A--L-.. Do T Pes A2 LY nTs
wnere i1= i,...N}. i1 = U, 1, 4, . }» iNIMi84LY ub' = {€iiNneTr U OF 1j 107 {j = 1,... 4}

and o{® for (k = 1,..

. M) comnstitute a set of independent functions for i = 0,1,2,.

By an evident change in notation which shows the dependence on the parameter t,

-rewrite (3.1) as

Si(ty,0) = £ 8,t7). 8 ) S, (t)n

where (j = 1,.

and W(t) for (k_ 1,.

.N). (= 0.1,2,..

: _WM(ti)) (3.2)

.), initially Sj(to) = (either O or I) for (j = 1,...N)

SN(ti');“ Wl_(ti-)’ .

. M) constitute a set of independent functions fori= 0,1, 2,...

By de Morgan s theorem (see Section 2 or [2: p. 13]) we may expand (3.2) as

S(t

_,f-\

1+1)

+.
I~
s

-+
™
L

<
uH:
T
-

O,. . . O, O;Wl(ti)’. -

.0,T
- 105 Wy (ty)- . M(ti))_

LT W () -

WM(t.» s' (ty)- -

(.Y, ... WL _(t, \
Vst AN

R
Spg—1(t3) Syelt;)
_____ Si_ Mt YS_(tY

CEN=IVE TNV -

y(t)- -

N
.. ,__...

;

;.5

N1 () Sglt) oot

(3.3)

) WM(ti)) Sy(t)- - Spy_y () SN(ti)

[2] Rosenblc;)m, P.C. The Elements of Ma_th'emati(::al Logic {Dover 1950)-
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Now (3.3) may be rewritten as

2N_

x
(1) EO oy (x;wl(ti),...WM(ti))E (t,)

where

oy (O;Wl(ti),. Waglt) = £ (00 0,0 W () .

a (1-;W1(ti),. L Wy(ty) = £ o.... 0T Wy (t) -

J

s EAUATARS .WM(ti)) =1, (0,. L0 W (t)se -

J

BO(t)) = Sy(t). - - Syg_y (&) Sy (t;)
Bt = 80t Syl Syt

B4ty = 8,(ty). - - Sy ) St

-1, .
(£) = S1(t). - - Sy_y(;) Sylty)
By (3.6) the E)‘(ti)'s satisfy the following property:

- 2Ny .
2 E) =1
“A=0

and

EMt) EX(ty) = 0 if » £y and

=) Er=p o

-27-
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By (3.4), (3.6) and (3.7) we have
0

By = Sy (tgg)e - Sea (i) Sligg)

aN_1

= )E(:) a; MWL), 'WM(ti) B (ti) i

—ZN-.-I ) ‘- B | . h | ':;
- EO & MWL) . W {t) B ('ti)u

é )

BT {tge) = 8y(t4)- - Byl (i) Syltigg)

<

2

= :0 di )t:Wl(ti)id..W" i

>
1}

wl o : 2.

or -

N

i -
Bt g = )EO ¥ i Wyt W(t) B(E)

) A
where (I.l = 0,1, _,Zfanzf“-"lj'l

e N

;’*N L
27 =1 =1 : . :
3 o - &=y e ver Y YT

(3.8)

.
Ce
mmy{am«

Tapramer &

derme s
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e

e
e
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LS. N i 75 D arrnataiirnant S o e i e Povarme B 0 W Vi e vty WP L o e

N
i
1
:(0 "o \ .. 1 ( ¢ : ) 4
YW (1), or.,WM(ti) = @ (MW () Wag(t)) - - ape W) - Wy(t) !
1 :
QNQ\;Wl(ti),. . .WM(ti)) :
7(1,x;wl_(ti)..-..WM(ti)) =a 1()\;W1(ti),...WM(tib 1 ,(ﬁ,Wl(t b "WM"?Q) | ?
ay (x;‘wl(ti),. . .WM(ti))
N MW b W) = @ WL Jt\\ ey [N W (t,), W.-.,fm\ -
\ R S i WLt 17y 1\ - 1° .m. J., .u—a-\ ave 'y ‘l
| o (x: Wi ()« .WM(ti)) (3.9)
and : = ' ' ' f
A N L
L He0 - 4

o
=1
ol

'y(q’,)\;Wi(ti):,. . .WM(ti)\) :y(u;x;Wl(ti),. : .WM(ti)\) =0 ifg#p and

SRR R gt | 14 SESAREYRIPN
| i
‘ 5 W,

= 7(p,x;_wl(ti);. : .WM(ti)) if o=p - (3.10) .
for (A = 0,1,2,...20-1)
) i
: *i
The canonical form of the simple Boolean system, given by (3.8), may be ,
-further exparded as ' . ' '
ey 2N :
E (ti-%';*l) = XZO Y 4,705, . .0,0) E (t )W (t ) M, l(t AL (ti) -
) 4
b
2N+-1 -
+ 2 Y(%:0,...0,1)E (t)Wl(t) Wyr 1(t) FCAE I, <
N | o Com
+ XZO Y ML LD E Mt $) Wyts) - oW () W (t) -

-29-




i, st el

-y e 3 - (3 A T Ll £ . =N v b e o LN LT i el N g 2 = .

or

2N_y M,
e )= S S BT ENE) V(Y
EX(t. = TR ! . .
*"it+l b 2o i i

(3.11)

where
B(msn30) = v(u.230,...0,0)

BusNi1) = ¥(usN30,...0,1)

.(3.12)
and

0 N ] ; o1 < ]

i) ‘t'c = WL "t't)'o‘".' ._'_"l;t“_ (t.) X'X't__ '(’t-) ¢
i M~1'V1Y "MV

'
7‘l + - XET £+ 0\ 1xr 1+ A\ IX2 4 %
v U3y M O STF.RUIFE 8 & VER Fysd 2

B "Mél‘_‘il ..M‘-:.i-, )

! .
: 'WMf‘*l'(,ti) WM(tl)

—~
([

.
~—

I
=
—~
L
[

-

M

27 by = W) - Wy (6 W (t)

\'s (3.13)

<

The canonfcal form of the simple Booleun system, given by (3.11) reduces to

Ny N ‘ N
EMt, ) = )g'o B X)E"(t;) . (=0,1,2,...2"=1) (3.14)

where 8{u.\) are c_ngfantg (eithér 0 or I). the canonical form of the simple Boolean

system with no external inputs, when the functions fj’ given by (3.2), are independent
of the functions

W (t,), W(t)ss - .%(ti) .

-30-
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Let us consider (3.11) in a form which uses the sunimation convention of

tensor analysis. Let

then (3.11) becomes

B, ) = B BN VT (=0l 2N_1y (3.15)
+1 1 1 N
where ‘
[ ‘ : . <
| ’ BMi,) B = BY ) when X = u
|° ) ‘ i =0 when \ #£ 4,
e vS(t) VE(ty) = VTt when 5 = r
| - ) : =0 when s £ r h
i . ~ and summations are on \ and ¥ for (n = 0,1,...25=1) and {y = 0,1,...2%-1}. i

<

.. We are now in a posruon to consider the solution of the snnple Boolean system
~(3 2y or its canonical equivalent (3. 15). By the above and (1 .6) of Part I we may
replace in (3.5) the non-exclusive "or" operation + bj @, the Bgolean ring sum
6peration or the exclusive "or" operation. With this observation in mind we may

interpret (3. 15) as a matrix difference equatlon )
Elty41) = Bylty) £ty | (3.16)

where

%)

. . " [l

3

——
w
~q




/
O r, Q r o Iy
By, V (t)h By  V(t)e . .BZN 1.rv (ti)\

/ . : :
R NTR A
B(t) = (BY, .Y (ti)) = ‘ : . (3.17)
N N
Bcz) —IV(tl,, 2 ‘IV(t D BETE vy,
27 =lir
the initial condition of (3. 165 is .
5 ' _1()‘

B (.to.) |

ml)
&lt) = ( ‘ \ S (3.18)

z*‘—l ) /

~ and the elements of the matrlces 5(t ) and B, St for all t; ‘aré either 0 or I, the
two elements Whlch form afleld F, with respect to (¢) and +; 1SOmorphlc to the
f1e1d of residue classes, modulo 2. ' -
The solution of (3.16) with the initial condition (3.18§-is by induction,
i

c<t>~d'B(t>&(t> S  (a9)

-
o

from. FZ' The uniqueness of the solution (3.19) is evident if one considers two

solutions which satisfy (3.16) and have thé same initial conidition. These two

solatioris may be shown to be identical for all t by iniduction. We, theréfore; have
< the following theoreri:
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Theorem 3.1 The solution of the simple Boolean system (3.2) or its

- o e

, canonical equlvalent {3.15) wiih initial condition (3.18) exists, is unique and is
given explicitly by (3. 19) in the notation of (3.17).

The facts leading to and the statement of Theorem 3.1 give independent
mathematical support to the conclusion reached in Part I. section 1, that the
simple Boolean system (3.2) may be analysed physically by a machine consisting

| ~of N=clocked flip flops for the dependent variables and sultablb physical devices
‘ . for producmg the sums and products of the variables
|

for i=0,1,2,.... We will aexi investigate the result of interconniecting two or
iiore simple Boolean systems

glven by

n - ot

| , _
‘ ~ Letus call the 51mp1e Boolean system;, glven by (3.5), E(t ) and let the system,
|

Vi) = Gy VU B i e

where (rys = 0,1,... ZM_-I) and (¢ = 0,1,... ZN-I), be called V(). The systeim B(t;)

and V{t ) are interconnected or feed into one another. This is shown by Diagram 1.

Diagram 1

H(t,)

N
g

Prd
a

: | | , v(t,)

it We combing (3.15) and (3.20), utilizing (3:16), we have

-33-
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S L5 e il ek FEP v SR N A 4 $. i L . TR e P
w. b
mg:
1N r s .y :
EH(t, 1) Vit ) = By, B ) vt C, . Vo) E%) i
r A s
= B‘{;q.CmS(E (t) ENt,) vq(ti)v (t;) R
=BY _cf mMt) A
e ¥% -] X s i i
where 4, \'=0,1;...2 =l and v, s = 0,1,...2=1. Suppose we let g
0, 0 § 0_ 0 0 ) .
clivy = 2% vl Al _ =0 o0 2 i
Gt =2V iy 0 = =0,0%0,0 B Il
é ¢ .
M M MN_;, N LM " i
2 . 2 g2 -1 27-1 .
7 B G_ (t ) = B0 (t; )v (t) Ay By, 0 "Ch.0 11
- - - M - — I —\———~ % :
2 1 0 10 0 .0
G* (t) =E (t)V (t;) \ Ay = Bg,; Co;1 B
27+ 1 S . | 1 _ 50 &1
M+1 : M M+N N Mo, :
Kookt IO | 2V1 2 1_ g2 -l -1 N
G (t;) __E () V (t;) 51 By. 1 CO 1 .o
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(2]

M+N-1 N
2 -1 2 -1 0 0 0 0
G (t.) = E (t:) V(1) A =B - C
i i i ZM+N—1 ZN-I;ZM—I ZN--I ZM--l
M+N-1 N
_.2 . 27-1 1 1 0 Q
G (t.) = E (t,) V(L) A =B C
i i i 2M+N_1 ZN—I;ZM 1 ZN—I;ZM-I
B T A PR e
1 1 RMAN_y — ToN 1 aMoy N M
théen (3.21) may be rewritten as
~€ v = A€ nm°/.|. \
A& (Ei_l__l) = ﬂm\‘.: ‘\_Li)‘ (3.22')
; s M % ]
where m,e = G,1,2,...2° -1, By {3.15j we see that the two interconnected simpie

Boolean systems E(.ti) and V(ti) form a highér order simple Boolean system G(t;)»
_éi\;en by (3.22). By assuming that -nv-intereonri_e_ete‘d simple Boolean systemsforrﬁa
s1mp1e Booclean s_;ystem H (t )} of higher order for purposes of _induction, we see by
the above argument that H (t ) interconnected with another simple Boolean system

A(ti) W11 again form a simple Boolean system H 1(t .) of higher order Thus our

induction hypoth"esis is complete and we have the following theorem.

Theorem 3.2  The system of n-interconnected simple Boolean systems of

t; is a simple Boolean system of ¢, for n = 2,3,4...

By (1.31) of Section 1, Part I, the equations ‘of the clocked flip flop form a
simple Boolean system (of two configurations) Therefore; by Theorem 3.2 any

oy s
Nuniper o1 ititerconnected two bvl.ul.su.l. Taticnt Buulean Syntbl.aan cf ti Ay CVu;vab

a simple Boolean system of t. Combining this statement with the. statement,
following (1.35) of Section 1 of Part I we have the following theorem.

'I:‘iueorem 3.3 The nécessary and sufficient condition that a syst.lém of

Boolean differenoe equations of one discrete paraineter ti form a simpie Boolean

system is that this sysiem may be physically represenied by a machine which -
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consists oniy of clocked flip flops and suitable physical devices for producing the
sums and products of the outputs of the flip flops.

Ancther consequence of Theorem 3.2 is a conceptual approach to the so-called
digital control problem. Suppose C(ti) is a simple Boolean system whose inputs are
from the local external world W'(t) (through digitalized instruments) and that C(ti)
delive;'s outputs to the local external world W!(t) through digital actuators (motors,
hydraulic pistons, etc.). Suppose further tﬁat W'(t) has well defined laws which
are corrupted in general by a noise source N’(t) from the world in the large. Suppose
V'thatr the laws of W:'(t) s action and reaction with respec{ to the system C'('ti) may be
a?,pz:éxiﬁ:;&téd t{C somic degree o accuracy i & i) and
that N'(t) May be app,roxim'a\ted by N(ti)‘ Diagram Zishows the interconnections of

b(ti), W(t;) and N(t,).

¢ - Diagram 2

C(ty) w(t,) N{t;)

By Theorem 3.2 we may regard the total system comprising C’(ti), W(t;), N(ti) and

“their iﬁtergonnections as a s_imple Boolean system. Theoretically this system has
a solution as was demonstrated by (3.19). In the next section a further understand-
ing of this system will be obtained by the use of probability theory. :

4
. Ll e T T T
VL LHT SLIIIpPICT _DUS’JJ.CZIII §y§ L1l

By the rules of probability, given by I, II, III, (2.14) and (2.15) of Section 2,
Part I, we have for the simple Boolean system by (3.15) and (3.16),

P QE“(ti H)D = bf)f AP ;QEX(ti) vr(ti)b

i




for (u = 0,1,...2N-1) and (r = 0,1,2,...2M-1) where bf' = the integer 1

when Bﬁ
iy

is either the constant I or 0 for all t.). If we assume the conditional probabilities

T
PleM,)| (".’ ()

= I and 0 when Bﬁ)f-r =.0 (this assumes that B’g‘r for each tripliet {(A,u,T)

are known and construct the mairices

and
&)
(t;5 1
T %) =
r . ° . B
Qv (t) (4.2)
(ty) =
then (4.1) becomes the matrix equation ' ' 7
e(t; ) = T (tpe(t) (4.3)

(i=0,1,2,...) with the assumed initial condition, :

-37-

B R T auny BRI B

L3
&

A

e N7

4
,i
‘0
il

i

|

e S T T BT A

Jmidim&iﬁ

o




‘-

£ - 4 e L e e A e e — e e s
0 .
: (1E%,)
1 - ¥
. (=) z
e(to)_= ,1
l N ; I
: 21 i
p (8% X)) |
¥ : . 5
J (==, Jj
| The umigue solution of \4 5) is easily shown to be |
N
i &%) = I Tt))et) ' P (‘:“4) ;
i J-'--O R ‘f
. .
| R s
E = . e _:
~ If the conditional probabilities P_, Q V7it)) are the same for all t;, then :
_ ) B j
4 53 . ’ ) q»‘
o T, = T(t) = T(t)=... . | - (4.5) ;
‘ ' : 1
With (4.5) the solution (4.4) may be expressed as 8
. 7 | IJ
e(t;) = T e(t) o ' (4.6} »
i
: where T; is the i-th power of the matrix Tv‘ If the events ]Vr(ti)l are independent ‘
s ' ‘ '
H - ——t __._1_ [IR— “I—.!Xl.l. .t T S, =
: OL gaTw event (& (i;)]. then ‘
; - H i & - P -
= {ivepl) = p (viep) C @ ,_
¢ IE (t | ’ . : J :
’ ) ;
1 5 ~ k
| for (i = 6;1,2...). If (4.7) is true; then the simple Boolean system E(t,) is said to -4
! be independent of its inpit system V{ti). If the system E(‘;i) has no inp'u@ system % .
% V(t;), then [t’i
o &
!. -38- E*:é‘
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T =T ' (4.8)
where T is a matrix whose elements are either the integer 1 or 0. (4.8) is the case
of the simple Boolean system (3.14) with no external inputs.

Let us consider the system of Diagram 2. The system of Boolean difference
equations for C(t,) and W(t,) with input N(t;) will be ‘

- = g% My wl - S
C (ti+1) - J)\;qc (ti)w (ti') : o (4.9)
and - . _
- Wi, oy = KF Cort WS NSy
Y o\ '1+ll - O_.’S;p ~ ,‘vi, WO Wy
. for P = 0,1,...28-1), (gr.s =0,1...2M21) and (p = 0,1....27-1). If we combine

systems C(t,.:) and V:V(ti) as in (3.21) we obtain -

) Wt

M
cHt, .

_ i+l Nis NS
The total system (4.10) of -C(ti)’ W(ty) and N(ti) may be put, using the argument

preceding (3.22), in the form of system (3.22). Then we have
' 2 2 Tt m ' ‘
CU(ty,) = D NP ] U)o o (4.11)

where the initial condition is Um(fco), thé matrix Dél [Np(ti)] denotes the functional

dei)endénce of the elements of the matrix on Np(ti) for (p = 9,1,...Zr—1) and

m,f =0, 1,2,...2M+N-I). Let us suppose that the approximate noise sourcé N({ci)

is unaffected by the system. U(t;). That is, the events |Np(ti§| are independent of |

Wm@ﬂ;ﬁpmdm.MwmmnIa |
- P(NP) = NP ) = POINRE)D = .

for (p = O,;l,...Zr). Thencas in (4.15, using (4.7), we obtain from (4.11),

P Uty ) = 4 [PANPD] P U™ ) @12
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for (,m = 0,1,...ZM+'N-1) where for each £ and m dxfn [P(INPI)] is either 0 or a )

} : . ) ¥

partial sum of the probabilities P(|NP|) for (p = 0,1,...2"~1) and the initial condition 1

is chosen to be P(lUm(to)I). We may rewrite (4.12) in the form of (4.3) or as the
matrix equation .
Ut 1+1) = Ty U(t;) - (%13

~where the initial condition is U(=t )s

T ARG A

/ Dim't_f_\h \

‘U(ti)=;/: - ’ o - : E
N G YUY S | SR
\pdo?" e/ B 1
i=0,1,2,...) and :
it @ rpony_ PPUNED] S

2MAN_,; M+
g LEdNP)] ... M+N [P(INPI)]'_

. By (4.5) and (4.6) equation (4.13) has the solution

a8 i ]
Ult) = T U | (4.19)
for (i = 0,1,2,3...). From (4 14). we have obtained P(IUl(t-;[) for (£ =0,1,.. M+N—1\)‘ i
’ o =t 23 i sy S Ee P ~N e Lo = N1 M L. h
and (1 = 5, 1,2...) or ¥Y(jU '(T,i-) :'tbiiij 10T {f& = Gis...87 =L, (T = C55,..08 =25 208




e S —

(i=0,12,...). Since

27 =1
'y
chiey = i) 1= ity 1{,‘0 wit,)
ZM-
~ M Yey
= % ) Wity

r=0
where
[CH(t) W] [CMt) Wil =0 i rés and

= cl(t) Wit i u=s

we have by (2.14) of Part L

[ AT I

M-
Pt = X
r=

Y PlhcHiey) Wit h.

-+ In a‘similar fashion we obtain

N
2l _
P Wi = zo PdC“(ti)-Wr(ti?_l)

<

From (2.14) of Part I we have

P(l ctet,) Wityh = R (we)h P C‘_‘(ti)'l)

cHty)l

=P (| .3 P Wt
ey | cHeph Pdwieh

4

From (4.15), (4.16) and (4£.19) we obtain

. P(lckt,) Wit)h
B, (W«

I C”(ti)' [ L )
2, Bl Wiegh

‘and
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(4.16)

(4.17)
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P(I ce) wieh

P

ey (el =

(4.18)
)l

E P(|C°(ty) Wtph

as the conditional probabilities, rélating the configurations of .C(ti) and'W(ti) of

Diagram 2 at t;; in terms of the probabilities of the total systein

obtained as the solution o

It i

.i J]_
o]
O
1
i
i o
1
Jomd
(2]
[
10}

LT = e N LTI L3

N A STy, U P 5
L i u.L AW EA~S SN

nave L

that the very g eriéral simple Booléan System, given by Diagram 2; is a discrete

Markov cham OF Pprocess where the trearngition. orobah

PSS 24

t,'lps are constants for all
Smce the literature is prevalent with stud1es of such chams, it is expected

that the probability approach to the Boolean system will lead to new and poss1b1y

practical results in the subject of digital (.ompute1 s. For the rémainder of thls

section we will discuss br1ef1y the solution of Markov chains by maitricés of
generating funct1onsi :

The matrix solutions (4.6) and (4.14) arisc from a matrix equation of the form
U(ti+1) = PU(ti) (4.19)

where the initial condition is U(f),

| / Py Py, oo M\

Py1, ¥z

fbﬁ (jk"f{‘ = i*,‘.v.'.‘M:j',‘: ' e

# e b e b, vm iy o !

P

P! Y

Clo sl e =

R e T i A I LB B S T

PRy




ST — e e O e e S SO £
.- i_
4]
R i i
7 b
U,(t)
U,(t,)
Ut,)=
| Upgity) :
" ghd ) ,
. _ S P, =1iasd By, 28 - {4,203 l!!.
‘ - . iEl ik ik v
for (3.K = 1,:..M), :
c‘_,I"h‘e unique solution of (4.19) is d E
_pl Y HE
utt;) = PHUL) < (4.21)
= for (i = G, 1,25,
Our purpose will be to discuss briefly another representation of P! and its value
for large values of i.- : ‘ .
Now U(t;) may be considered as a vector in the M-dimensional complex column 1
vector space Cyp, composed of elements . _ ' e
. 231
: . *2
x=| ° | ; . (4.22)
.‘= ] ;L
x| !
M g
where x, are complex numbers. Lt us$ introduce a norm of x in (4.22) as

=l = 1_21 %] = (4.23)
-43-
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With |x|| defined by (4.23), it is not difficult to show

%+ yll < =] + |l
and .
lax|l = la] ||| . (4.24)

where X,y CCM and a is a complex number. Let us define the norm of an M X M
matrix A, whose elements are complex nimbers as

llall = sup |Ax]] - | . (4:25)

where % £C,,; and

sup i Ax
I=li=1"
is the leasi upper bound or supremum of ||Ax| for % on the unit “sphere® or
x|l = :. From (4.24) and (4.25) we have for the M X M miatrices A and B,
lax|.< Al =] ;
e s Bl a] ¢ s -
laBl < &l IB]  and o
: laBll = la] Bl f _ (4.26)°
where a is a complex number Letus callan M >< M matrix w1th property '
(4.20) a Markov matrix. _
Let P = (p;;) be an (M X M)-Markov matrix and x £Cy such that ||x|| =
Then -
Iex|l = 20 | 2%pxd 20 2. ppixl = 'Z le Zpl 2 x| = lixll =1 . @27
i=1 =1 ¥ 3 ==t 83 =1 Y :

Moreover, if x is such Ithat.

iz =1 with x. 2.0
=1 ’ 1

_ i
ot < &85 x-S ST . S
Pxll = > 13 p..81 = 2 > P X. = ) X, P:. = b & x =1
i=1 j=1 ¥ ¥ =14=1 W3 321 di;1 R §E1

P B e S Y

R,
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-
i
)
By (4.27), (4 28) and (4. 2“) we thus have _ -lfl
2l = _ (4.29)
when P is a Markov matrix. Suppose Q = (qii) is another (M X M)-Markov matrix, ,
. o i
then the elements of PQ are |
Z ik qu i
for (i,j = 1,2;...M); and i
M M M k
Z( Z Psi 9g4) = ~Z—_ Qi = 1 )

;—..-

i1 k
for (= °M')a

Thus (4. 20) is sdtisfied and PQ is a Markov matrix. By (4: 2.9) we therefore have

ll)
....
i
I
I
c
-
I
P
Cnd
P I [ | s )

<

= [pall = izl feil . (4.30)
The generahzatmn of (4. 30) to any number of products of Markov matrices is
-—-—clearly evidentr ————<—————— S T e

PUSDCITp it | SN

I__,et us now consider the series
&L . . _
I+ Z Pt , ‘ * (4.31)

where P is a Markov matr1x and s is a complex varlable For (4 31) we have by

(4.26) and (4.30) ‘ 7 : : ‘E

fre S Pt 143 et fsli= S [s)i= oy for o] <1 .

i=1 i=1 = 1-Js] ’ - ; |

Moreover, ’gba matriv series (4,21} satigfics the mwt;a; cquct.u;xl, ‘ 2
X(I -'sP) =

By’ (4 32) we have that (4 31) exists for !s[ < 1 and as a consequefice by the precedmg
sentence we have finally

o
e e T L=

1

L. kI3

< : ¥

e 4 <7 i B

£ 32 N S T o Lovr e o e =1

- S S‘:,‘ LT [/ I'- i s 0T roE <i . & .‘33’) £
1=




Now from matrix theory we know

-1 1 . 1
- - — ~8P) = ——— (g.(s) = (£: 4.34
(1 - sP) m— Adj(I - sP) Ty (glJ(s)) (flJ(s)> (4.34)

where Adj(I - sP) is the adjoint of the matrix I — sP or the matrix of (M — 1)—order

 cofactors of 1= sP and |I - sP| is the determinant of I~ sP. By definition we have
. that gij(s) and |1 - sP| are polynomials of s such that the degree of g‘ij(s') is less

than the degree of |I = 8P| or

aeg[gij(s)};s deg[|1 = ’sﬁl]; =1 . | (4.35)

Let s Suppose that thé roots of II - SPI aerls Qz; .:x. d.N of orders ml; -Inz, 33 mN;
respectively. From (4.34) this is equivalent to the statement that fi.j_(s') for
(i3 = 1:2,:..M) are ratiohal fractions with possible poles at By dgs -"O"‘QN of ordets
of at most m,; m,, ... myn respectively. From (4.33) and {4.34) we have
la.] =1 |
1

Diagram 2
A~ -

U-plane

2

T

-

B e e
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Let us consider Diagram 2. The double path from a to b in the complex U-plane
is such that it does not cut across any pole ;. The path: a to b; arcund C, clock-
wise, to b; b to a; around T t:'ounterclo‘ckWis'é to a: is a closed coiinterclockwise:
path, call it A, which contains all the poles of f (s) for (i, §j = 1, ... M). Thus for
|s| <rwevhave ‘

. Cf..(u) N, /‘ (w - : _
..i 1] Jii = D _1_ ¥ A . _1.1 T L PR .
Zml js=u M gl 2ni jC. TEs—w ot (#.36)
= S0y

(isj = 1, ... M) where C, are small circles about di{ such that no two of these circles

everiap or intersect with [, € or thé path ‘fi‘éﬁi & to b:; Sirice thie line integrals of
f;i(u})/s = u from a to b ‘and from b to & cancel, we have
¢ : ’ - (f.. u f..(u) u ) . o
SR LlJ_(_Z du = == L_J_(_.Z du o i et (2 e (@37
. , 27i s =u gri |- =u 2ril s =1 : i g
/A T c

<

for [8{ <r. By (4.35‘) fij(u)/s -u has no pole at infinity and consequently no poles

outsidé C. By Cauchy's theorem we then have

and
f..(u)
¢ .__1_. 13 g - f f
2ni s =1 du "_f:'kj(s)

W, J
wluch combmed with (4.36) and (4:37) - give finally

e . (4.38)

for [sf <r

¢ Fromni (4 38) we obfam




N £..(u) N f..(u) [ 2o q
f (S) -7 Z Z%nl [u(ll— S/u) u=-= z 2‘1];_.5_ (._ ‘1‘ Z:TSA—) du
k=1 _/é k=1 .jC LI:O _]
< | N- f..(u) i ) ]
- X 211r1 “—_‘113+1 du‘lsl : (4.39).
£=0 (k=1 : c U _J
“k

since |s| < |ul. From (4.39) the coefficient of sz is

- 3 | f;:(u) N i f. -— k ':c
Sy TP SRy o)

1 -":/’Ca u kz1 JCG-_L u J{u —uk)‘“l
-y e :
But fij(u) (u-— ak)mi u s regular within the circle C, since the order of pole
Co e
a of I (u) is at rT\l_c}S ’?ﬁ’*ﬂfllhus if we use the Cauchy m;egréiffo'rmu]a for the :
n-th derative, we obtain
N :, (u N m £..(u) (u —a, )Pk .
‘ 1 @ 1 M-y (0 (@ —ay) ‘
k=1 o u k=1 =10 (du)MR-1 u
. o’k - u=0.k
Combining (4.33), (4.34), (4.39) and (4.40) we obtain finally
N ¢ my (u - e, )Pk :
Z S d nla‘l KT Adj(I- uP)|, (4.41)
k=1 V1) |(du)k-1 | |1 - uP|u asa ~ .
- [« - o k

vhere the derivative of a matrix of functions is the mastrix of the derivatives of

"the functions. .

Another interpretation of the roots a,; of |1 = sP| is that they are the values
of s (the proper values) fér which the vector equatioiis

x = sPx and y = syP
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have non-trivial solutions (solutions other than the zero vector) where y is an

M-columqed row vector. Since the row vector

yp= (LL.1) : : (4.42)

satisfies
y=yP , : .
it is 1mmed1ately evident that s = 1 is always one of the’ roots G SAY Oy, when

Pisa Markov matr.x. Any other roots of |I ~ sP| of modulus one would

e e R Al wiea - ol
TIC1ISd uug,; ana we nia Yy ia RS thﬁ e

Aner wroant
WYY YO

- If s =1 is a first order root of |I — sP|, then the linear manifold generated

the form ayy where a is a compiex number. From (4.34) we have

1= sPI I = J%-i g(zJ (s) [5Jk ) (1, = L...M)
or 3
0= _Z g5 (1) [5y ~spycl) = g,— 8, P : (4.43) -

where GJk =0 when j# k and = 1 when j = k and

g ﬂé,ﬁ(l), g,(l), g m)

vP. = 0, hence

B

B}' f4 A2\ wao caa that’ ig a golution fo ¥ =

NEo RSy v RS veoeE al == =
gl = ﬂkyI (l = 1,‘-.-M)
where a, are c_ompiéx numbers and as a consequence
g, (=g (ly=...=g, (1 5 L (e44)
AT " I |

(2= 1,...M).
-49-
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If all the poles of 1/|I — sP| are of first order, then (4.41) becomes (compare [3])

j_ X 1 . N 1 [
Ry ey R N E R
=t % ldu lI_l‘Ipl_.u;u_k =2 % [du T ] uzay,
= > —— Ak : 4,
é%ﬁ a3+1 : ( )

k
where a;' = 1. By (4.44) it is evident that the elements of any given row of A, are

equal. If |a, | >1 for (k = 2,...M), thén

N ' ‘ -
fim P A (4.46)
Cl--! = 1, 045 = w’ 0:2 = (.‘Jz,‘..:a.}_f = wN—l

where w is an N-th root of unity, then

< I . . PR . I - el . .
— &

- - le . 5
lim ﬁjglp =A1 ’

= . N —+oo
since .
J - N+1
lim &l - lim | &% —| =0
N—>eo j=1 N N ipoo (1 -Ia')N

where a is an ﬁ-th root of unity, not equal to one. We shall use (4.453, (4.46) and
' (4.47) in the next section. In this section we have shown the Markovian nature of
the Boolean system. We have discussed briefly some elementary notions about
R AP

— _ S L e i v . P ) g B L — A __2Lir FREEY ) PP S, P 2
discrete Markov chairnis. We hope to refiie our wetnods with further elaboration

iil_a. later rep,ortd

[3] Feller, W., Probability Theory and its Appl-ications (John Wiley 1950j.
- -50- :
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5. The Trinary Counter

Before we consider the trinary counter, let us consider briefly examples of
physical devices which produce the sum and product of two Boolean functions of
time and solve the flip-flop eguation (1.14) of Part I. There are two schemes for
producing sums and products of Boolean functiofis with uﬁidirect{onal_curfent ]
devices. Scheme I is well known and discussed elsewhere [4]. Scheme II has t
been used for clipping voltages in various eléctronic cireuits; but to this author's :

knowledg'e,__ it hag not been considered seriviusly as 4 means of producing logical
= A‘ 3 -

Crap————T e

e e S

.

P YRSy | S PRI F baz.— mr=Fizizal ii in Faamadd s P e
retiinA SR KRR RFAARMITA 5 T wolén S PR AaTIANG faYgs)
sums ang proGustE of tWo VEiisd voliags IUNETIchs 11 & cONputer. {

e {7

5 of the Boolean time funetion A(t)

oy
[0}
e'-
o
w
(]
[=2
Lo
o))
)}
o
P
=
V)
pr s
e,
-
o
c’-
g
(o}
o
O
UL
%
o)y
ot
.
<
Y]
et
[
.
[}
Q.

1
SHE

and § 2 B,, If we have Alty and Bty of the same nature then A(t) + B(t) and

s

T et e e

A(t) B(t). may be obtained by eithér of the two schemes, given in Diggram 3; with

T~

diodes where B3 EH and V4 Bx, The sulput voltage in Disgrain 3 inay be obtained

from

Diagram 3
: g : . R

-Scheme 1 , ' . ;

:
> Af) + B(t) |

&> A(t) B(t):

g

v :vc,

e = <

[4] sprague,R.E., Technigues in The Deésign of bigital Computérs, & paper
presernted at Association of Computinig Machinery (March 1951),
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Diagram 3 {cont. } -
Scheme II {
4
-
!
E
!
e
3
. . A(t) 3
TA() o e =t A(Y) B(t) o0 s _ > Alt) + B{t)
- % ;!
¢ o
c ‘ i
? .
o]

B(t) B(t) %
} L o _ - "3
IA(t) | |B(t) l :
L L
A(t) B(f) = B + — _ :
L EH 4 EL .
~and ‘ 4 )
A(t) + B(t) = B IE =4 [Ee -] ‘(5.1
= 4 EH - LL _ ‘
where on the right + and - are addition and subtraction signs between real numbers.
The terms on the right of (5.1) may be taken as the definitions of the "and" and Yor" .

opérations on the left. In this case one may use the rules of ¢lementary algebra to 4
obtaiii the output voltages of a diode net, composed of trees or chains of the circuits ’
of Diagrar 3. o

w

If the voltages A(t) and B(t) are replaced 3 7y two arbitrary voltage 51gnals i(t)
and g(t) such that

g - v B ¢ =
12 Aot

-3

S - s
.

e

i

v <_< £1y. v < B

ARLi BT 2

-52-.




then the output of the "and" gates, given in Diagram 3, will be Min {f(t), g(t))
and the output of the "or" gates will be Max (f(t), g(‘t‘)) . If we let

[£.4 g](t) = Min (g(t), g(t)

and '
[f v g](t) = Max ((t), g(t)

for t contained in some range R, it is known that ti‘ie class of continuous functions

from a distributive lattlce under v and 4; a partla"ly ordered set with an upper

- and lower bound; sa.usfy*ng the dual distributive 18."WS; "

(fAg) vh=(fVhyA(gvh)

. (fvg) h=(AR)Vv(gAh)
Fre$=do Bos S8 oowaiil T e g, G CULGRES, BT S, 1 MY . [y S, K E T S 3 3 T 3
This fact May pe Uselul in g STudy O1 NoUN=Iin€gr Clrcw t anadysis.

Let us now consider the ideal flip-flop equatrion (1.14) of Part I

- X(t) = b(t) K(t-) + bl )‘{(i,)' . (5.2).
where b(t) and Ob(t) are<upspiks Bo-functions.
Equation (5.2) is equi\:ralen_t‘to
' < — '
X(t) = b(t) X(t-) + b(t)X(t) (5.3)
'If we let
’ 1 ) ’
X(t) = 5(t), b(t) = B(t), b(t) = B(t)
then (5.3) becomes
S(t) = B() S{t-) + B(H) S(t-) (5.4)

where B(t) and 05(1:) are downspil_{e Bo-functions. Equation (5.4) is the same form
as the ideal flip-flop equation {5.2), but with its two Bo~functiqn inputs (5(‘5) and

;Blt) as downspike functions. We will identify a downspike Boafunction with & train

of negative pulses; and the upspike B -function with a frain of pos'itive pulses.
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The flip-flop circuit, giveﬁ in Diagram 4 will approximately analyse (5.4)
: ' . :
where B(t) and op(t) are a train of negative pulses (approximate in the sense

that a pulse is never of zero width in duration and that a flip flop cannot be
triggered in zero time). : . -

Diagram 4

Bias -

<

The circuit given in Diagram 5 where a(t) is a B'_r/z(o)-functioh produces approximateiy

[o_a(t)] =a(tm) +a(t)

or negative pulses at the down jufap points of a{fj (ihé puises are negative with
respect to the Bias voltage). If E(t) is the clock function, defined in Definition 1.8
of Part I, then by the reasoning, leading to Theorem 1.7 of Part I, Diagrams 3,4 and 5
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' Diagram 5 i
] 1 1
i a(t)o | F— K DBty xa(t-) +o(t) = [d_a(t)] ';
< _ ) ﬁ
%
. . Centering : : !
| : < Voltage _ Blas A
the circuit of Diagram 6 will analyse the differénce eﬁuaﬁun ) %;
< : ' ’ : K
e : S(t +7) = a(t) S(t) + a®)s@t) __(5.3) o
: : : B
where a(t) and a(t) are B_(o)-functions. It will be convenient for our purposes to =
T : - Diagram 6 . L Ll
B+ ; B+ |
B+ B+ .
1 ) ’ é
S(t) < & S(t)
- = | —T—K T "

E(t) -alt)
vor - A a4

s

: I’Center L : Center I P

Voltage Voltage

- Q,og

. B1as ‘
regard the flip flop of D1agram 6 as a box. w1th two inputs, a(t) = a(t)E(t) and ~
u.(t) = a(t) E(L) and two outputs, S(t) and S(t) This representation is ‘shown in -

o°

Diagram 7. _There are other circuits and devices which may be used to analyse
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_present purpose to give this further attention.

Diagram 7

>8(t)

s = 2O E(E) o—r]

o) = a BE) o———n] - |——DS()

(5.3) other than the flip fldp shown in Diagram 6. Howewver, it will not be our

Let us now consider the design of a trinary counter. Following the notation

e 8 i

0 M T
CET(t) = 5,(;) S,(ty)
o . o
E'(t;) = 5;(t;) Sy(ty)
iy S ' .
B = S1(t) Sy(ty)
"3 N : .
E°(t;) = 8,(t) S,(t) : . (5.4)
Let B(t;) be the function of t, that is to be counted. If B(t;) =1 and Ez(ti) =1
3, . ot 20 1 2 0, ‘
or E7(t;) = I, thenlet E'(t; ;) =1L E #;40) E7(t,3) = L E(t ) =1 ete.

until B(£) = 0 some i>i. I B(t) = I and Ell__.\ = 1. then let E’zﬂ';“.) =1
. A 14 A 14 SEST EEE = OST18e1 =2

Arviaa v .ri 7 t— =

E'(t; ) = I etc. until B(t;) = 0 some §> i. I B(t;) =1 and E'(+) = L then

1 2 0, D | : . »
let E(t;,q) = 1 E(t,) =L Bt =L E (-'t.i_ +4) = 1 etc. until B(t;) =0

C s : -0 0, 15 1 2
some j>i. If B(t,) =0, let E(f) =E (t; ), E "(ti) =E (ty41)s E(tl) = Ez(ﬁiﬂ)

and E3(ti) = Es(ti%l). It is clear that these conditions are the conditions for a
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counter which counts when B(t;) = I, cycles on three when counting and stops ccunt-

ing when B(t,) = 0. Table 3 shows the operation of this counter more explicitly.

Table 3
0 : 1, 2, 3 :
P E ) | B Cy) | BG) | BT y)
2%t Bl [ 0 0 o
mlt,) Bht) 0 I 0 0
4 L
w2 ¢ ol . :
B%t,) Bt 0 0 i 0
w3ty Bt 0 o | o 1
1" 1 g I - =
-0 . o
B(t,) B(t,) 0 I 0 0
Bl Bty || 0 0 1 0
B(t;) Blty) I 0 0 0
E¥(t;) Bt,) 1 0 © 0- 0

‘From Table 3 and the preceding discussion the canonical form of the trinary

. couitter is

0

Bt ) = BOt) Bty + El(.ti)Bl(tl;)

Bty = Bt Bley + B Bty

3 .
Bt 41)

By (5.5) we nave

= B2t Bl(ty)

57

Bt ) = B3ty + Bty Bty + B0ty By

(5.5.
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9 e = 1 - e R AT R ey e} 0 L
S SRR WS (IR SR C I S R I - 0) % VL. B s

PR —y———— T 7 N

A ST TS e o maniir il

't +Elt) = S, (t;)
0 2 '
E%(t,) + EX(t) = Sty
Bt + () = 8 (1) Sy(t,) + S,(t)) S,(ty)

Blit,) + B2(t,) = S, (t) Sy(t,) + Syt S,(¢,)

| S N
Bt + Bt = 5,1t (5.5)

If we combine (5.5) and (5.6), we obtain .
Syltian) =[50t Bltp] 8,k + Bt 8,(t) |
5)(t) = [5,(t) Beeyl] 50t + Bl 8¢t - 67)

‘The equations of {5.7) are in the form of (5.3) where t, (i=20,1,2:..) are-the

~ down jump pomts of the clock function E(t‘ The equations of (5.7) are

‘clearly equﬁ/a lent to

) ' - . ' < i '
S,(ti41) = [S1(t) 8,0t Bty S;ty) + [S,(8,) B(t)] 8,(¢,)

Syt = D)0t S, Byl 8,6 + [8,¢) Byl syt (5.8) -

The redundancy in (5.8) is imposed for the practical purposeé of insuring the
triggering of the flip flop when a(t) = &) = L so.ae t. ‘

"By (5. 3), (5.8) and Dlagram 6 we will need two flip flops S and Sz W1th '

et A oo & e

respecuve inpuis al(t), J_(t) and az(t), &,(t) where e

3yt = 8,(4) S,(5) B . @y(8) = §;(0) Blt)

R LY CR:CRERE WO RENCR 10
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By (5.9) the a, (1), & (1) and ou.z(t) inputs, as defined by Diagram 7, are

1 1
a (1) = S;(1) S,(t) B{t) E(t) . g,;(t) = S;(t) B(t) E(t)
‘ :
a,(t) = S;(t) S,(t) B(t) E(t) v Sa(t) = 5,(1) B(t) E(t_) (5.10)
After a consideration of Diagrams 3 and 7 and (5.10) one sees that Diagfam‘8
represents the circuit diagram of the above discussed trinary counter or the
physical device which will analyse the equation of (5.8).
Diagram 8
’ i — r ) - . S L
S1(t) o===e=y +55(t) gtalt) o— S0
: s,
ay(t) O———i : 5, (t) a,(t) o—r ———5, ().

si(t)

Sh(1)

5,(6

& )

B(t)  B(t

[

Sy (t)

The method wé have used to obtain the design of Diagram 8 is not ne:cessér'iiy

the most efficient design technique. We havé used this method because it shows
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most clearly the nature of a Boolean system. A study of design techniques will be
"given at a later date. .
‘Let us suppose the probabilities,
PRGN =D (5.11)
L \ 1[ (¥4 x
for (i = 0,1,2...) and
q=1-p ,

and that the event IB(ti:)i is independent of Eo(ti), El(ti), Ez(ti), and E3(ti)

for (i = 0,1,2...). By (4.1y and (5.11) we then have °

/‘ P(E (8, D | / dopp "P(i‘E-(ti)i)‘\ _.

. P(!E lx"t _..'.)!) pdoo P(!—‘l(+1)!) -

e(tiy)) = o ‘ = Te(t;)
P(E (t,_..})h opdo P(‘E “Jh

\1?<IE‘3(t=i+;1)I5 o-—ooq/ - \p(E%)

for (i = 0, 152,.;.), where the initial condition is ¢hosen to be e(t,), as the Markov
chain for the trinary counter of Diagram 8. Now the matrix, corresponding to
(4:39); will be by (5:12),

1-sq O -8Sp ~-Sp b
1 ~-sp l-sq 0 0
(I-8T) " =1 o 0 1-sq O
0 0 0 - sq,

/ (1= 50, )21 - sy (sp¥1 - s, fsp)1 — saa‘z\
< 2 . 2 . 2 :

(sp)(1 = sq)"s, (1 =897 , (sp) (L ~sq), (sp) (1 - sq)
2 e 2 3 3

(sp) (1 = sa)s (sp)(I-sq)” (L-sq)” .  (sp)

o 0, 0 (L=sd(en)

3
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where |I - sT| is the determinant of I — sT, given by
i ¥ r 3 . 3'1 . =
[ I-sT| =(1-sq) [(1 -sq)"=(sp)"] - (5.14)

The roots of |I -sT| are -

op=1ay oy =30 iNBIa Y g, = (=30-15@ Y (5
: g 2(p” +q) - 2(pT+q")
where i= J= 1, If1>g>0, then §,> 1 and
Thus a; =
obtain
(5.16)
as the matrix associated with the root ¢, = 1. Combining (5.16) with (4.46) we
have ‘ ‘
/1_ 111
Mmoo i, _1(tPLE
oo ¢ SA153 1111
6000
X .
and thus by (5.12) we obtain
i oo PUEI(E)) = P(EIe0)]) =3  for (j=0,1,2) and
eyl = PEI)) = 0 . - (5.17)
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By (5.17) and (5.6) in conjunction with the rules of probability we have finally

P(ISy(e0))) = P(IS (o)) = 5

_and

wlN

P(s()) = P(S,)]) =
as would be expecte 1 intuitively.

if P(IBl(t,s)I) =q=0 for(i= 0,1,2,...),: then the matrix T of (5.12) becomes
/o
T, - (

<
S O QO
o «
et

Tl

' /CI Qe

a_l‘nd

¢!

with roots

~ _ 2in/3  4in/3
al._l, §Z—e . Sg = € s

the cube roots of unity. It is not difficult to show in this case by (4.45) that

1111\
- §T13 TERRR
Iim > T =A =73 (5.19)
N_’mjleVIS.llll ‘. |
0.0 0 0f

thereby demorist-raffng the validity of (4.47). (5.19) also follows directly from

{5:18) by mu .tupﬂ(,a‘uuu and sumiming by noticing that
. 0011
= [19%0% . irn=1 Moeas
0100 : .
\oooo
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”an *and* Q™ ge are. LEeT (

/0100
mn=f0011 ie =2 NMsd 2
1 Y1000
\oooo
h oo o -
= (9100 4 nz0 Mods
0011
000.9/

A further study of matrices of the above type will be made in a later report. One
should notice that if p = 0, then the matrix T of (5.12) becomes I, the identity

matrix. This corresponds io the counter iocking on its initia 1 configuration.
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Table 4

V(A) | V{B) | V(AB)| Current through R | Voltage across R Power

L D-EL/R D-E

0 I R 1A | FU | 0 P I A PR | S KON SO SV S E o2 S a1 B O W
-a
=
&=
=
S
=

L L L R
(D - E. )
B | By | By D~ E; /R D-Ep = L
" (D - E. )% i
‘ B, | B, E. D~E,. /R D-E. L’
ER A 2d Ik L) e R '}
i E,H By Eg D - LL/R D~-Ey =
: By Diagram 9 and Table 4 we have ¥
i (D - Ep)” (D-Ep)° ' S |
Average power dissipatéd by R = —p P(|AB]) + R [1 - P(AB)] e
B Average current through R =——p—= P(AB) + - [1 - P(|AB))]
A similaf résult can be obtained for the torh gate. The study of the Booleah %
machine as a Markov chain thereby appears to be of practical 51gmf1cance in ) {,
the design problems of these machines. '
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